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Abstract: In this paper, the dynamic couplings among different inputs and outputs of a highly nonlinear 

spark ignition (SI) engine control problem during the cold start phase are evaluated by using relative 

gain array (RGA) technique. First, based on the experimental data, a multi-input multi-output model is 

developed to represent the engine dynamics. Second, the coupling among different inputs and outputs of 

the model is evaluated by using RGA technique in both open-loop and closed-loop structures. The results 

show that although there is an internal coupling within the engine dynamics in the open-loop framework, 

the closed-loop engine controller can be designed using a decentralized structure without significantly 

affecting the system performance. In the next step, based on a nonlinear physics-based model of the 

engine, a set of single-input single-output (SISO) adaptive second order discrete sliding mode controllers 

(DSMC) are designed to drive the states of the engine model to their pre-defined desired trajectories and 

minimize the tailpipe HC emission, under modelling and implementation (data sampling and 

quantization) uncertainties. The real-time test results on an actual engine control unit (ECU) show that 

the proposed SISO adaptive second order DSMC provides accurate and fast tracking performance for 

the highly nonlinear and internally coupled engine dynamics, and can meet the HC emission limit by 

controlling the engine-out emissions and exhaust catalytic converter efficiency.   

Keywords— Sliding Mode Control, Dynamic Coupling, Relative Gain Array, Engine Cold Start Control 

1-Introduction 

Cold start phase in spark ignition (SI) engines has significant effects on the produced carbon monoxide 

(CO) and unburnt hydrocarbon (HC) emissions, fuel economy, and vehicle drivability. The 5-10 minute 

time period between the cold start and the moment the engine’s coolant temperature reaches 80-100°C, 

is defined as the cold phase [1]. The generated HC emission during the cold start phase is responsible 

for over 80% of the total emissions in standard driving cycles [2,3]. When the ambient temperature drops 
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to −7oC, HC emission levels will increase by 2.5 – 4 times, in comparison to  the case with 20oC ambient 

temperature [4]. The cold start phase is an unavoidable part of standard driving cycles. Thus, reducing 

the tailpipe HC emission during the cold start phase is an important challenge with increasing importance 

as the industry moves towards green vehicles. 

There are two main reasons for high HC emission production rate during the cold start phase (i) the 

instability of the combustion inside the cylinders due to poor fuel-air mixing, cold cylinders walls, and 

poor evaporation of cold fuel, and (ii) low conversion efficiency of catalytic converters at low 

temperatures. Unlike the active emission reduction methods [5-7], in which extra equipment is added 

either to the engine or to the exhaust aftertreatment system to meet the desired requirements, in the 

passive HC emission reduction methods, the main component to minimize the tailpipe emission is the 

exhaust catalytic converter. At low temperatures, due to the low conversion efficiency of catalytic 

converters, the exhaust aftertreatment system cannot mitigate unburnt HC until catalyst “light-off” (i.e., 

operating temperature of about 300oC) is reached.  

The optimum performance of the exhaust oxidation catalyst is achieved if the engine can follow the 

desired operation trajectories [1]. One way to increase the exhaust gas temperature for heating-up the 

catalyst and reducing the catalytic converter light-off time is retarding the spark timing; however, this 

results in higher engine-out HC emission. The other parallel approach to heat-up the catalyst is increasing 

the exhaust gas flow rate by increasing the idle engine speed. Increasing the idle engine speed with fixed 

injected fuel amount leads to lean air-to-fuel ratio (AFR), which is not desirable during the beginning of 

cold start phase, because of limited fuel evaporation and mixing that can lead to unstable combustion. 

Thus, more fuel needs to be injected to keep the AFR rich enough during the cold start phase. Overall, 

adjusting engine cold start operation is a complex nonlinear control problem that requires trade-offs 

among engine speed, exhaust gas temperature, and AFR controls. 

High level of nonlinearity and complexity in the engine cold start transient dynamics call for nonlinear 

model-based control techniques. The first requirement for developing a model-based engine cold start 

controller is having an accurate and computationally efficient physics-based model which can estimate 

the transient engine dynamics. The second requirement is that the designed controller should be easily 

verifiable and can be easily implemented on a real engine. Additionally, the desired controller should be 
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robust and has an adaptive structure against external and internal sources of uncertainties. The major 

sources of uncertainties are (i) implementation imprecisions introduced by the analog-to-digital 

converter (ADC) unit via data sampling and quantization, and (ii) uncertainties within the plant model 

due to aging, unseen dynamics, and model parameter variations for the transient conditions that the 

model has not been calibrated for. Thereby, in this paper, a nonlinear control-oriented model of an SI 

engine coupled with a three-way catalytic converter is used to design a model-based nonlinear controller 

to regulate the tailpipe HC emission. A second order adaptive discrete sliding mode controller (DSMC) 

framework is used in this study to design the engine cold start controller, since the second order adaptive 

DSMC is a robust and computationally efficient controller design technique that can treat systems with 

nonlinear dynamics with a great deal of uncertainty [8]. Eventually, in order to verify the designed 

controller performance in real-time, the cold start DSMC is tested in a processor-in-the-loop (PIL) setup 

by using an actual engine control unit (ECU), under modeling and implementation imprecisions. 

The internally coupled and complex dynamics of the engine cold start require a controller framework 

with multiple input and outputs. The second order DSMC can be designed in both decentralized (single-

input single-output (SISO)) and centralized (multi-input multi-output (MIMO)) structures. This means 

that the engine cold start controller can be designed with a single MIMO or a set of SISO DSMCs. 

Design of a decentralized controller has several benefits [9,10], including (i) improved productivity 

through module reuse, (ii) easy integration of new features, (iii) enhanced maintainability, and (iv) 

module sharing across powertrain platforms. On the other side, the calibration time and efforts for a set 

of decentralized controllers can be cumbersome, compared to a single MIMO controller. The tailpipe 

HC emission during the cold start phase is a function of several inputs. Thus, for the closed-loop 

controller design, the level of interaction among different control loops between several input/outputs 

(I/Os) pairs should be analyzed to understand the closed-loop dynamics coupling. The purpose is to 

determine proper pairings between engine cold start model I/Os to match the plant inputs and outputs 

that have the largest effect on each other within the DSMC structure [11]. Relative gain array (RGA) is 

a well-recognized dynamic coupling analysis method which provides a systematic approach to determine 

the coupling between controller I/Os [11]. The RGA method is used in this paper to conduct closed-loop 

dynamics coupling analysis and determine the proper structure for the second order DSMC, either SISO 

(decentralized) or MIMO (centralized).  
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The contribution of this paper is twofold. First, the RGA technique is used to perform a closed-loop 

dynamics coupling analysis to understand the structure of the closed-loop system. The RGA analysis 

requires a linear model which is derived based on the available experimental data for a 2.4-Liter SI 

engine during the cold start phase. Second, according to the RGA analysis results, a SISO adaptive 

second order DSMC is designed and experimentally tested in real-time for tracking the desired engine 

trajectories, in order to minimize the cold start tailpipe HC emission.  

2- Engine Cold Start Dynamic Coupling Analysis  

This section determines the engine dynamic coupling and required controller structure (SISO or MIMO) 

for the second order DSMC by performing RGA analysis.  This will be done by finding the proper 

pairings between different inputs and outputs of the plant/controller, and eventually match up those pairs 

of I/O which have the largest effect on each. The RGA analysis is done for a model of the engine with 

three inputs (𝑢𝑖) and three outputs (𝑦𝑖): 

𝑌 = [

𝑦1
𝑦2
𝑦3
] = [

𝐴𝐹𝑅
𝜔𝑒
𝑇𝑒𝑥ℎ

] (1) 

𝑈 = [

𝑢1
𝑢2
𝑢3
] = [

�̇�𝑓𝑐
�̇�𝑎𝑖
Δ

] (2) 

where 𝜔𝑒 is the engine speed, 𝑇𝑒𝑥ℎ is the exhaust gas temperature,  �̇�𝑓𝑐 is the mass flow rate of injected 

fuel into the cylinders, �̇�𝑎𝑖 is the air mass flow rate into the intake manifold, and Δ is the spark timing 

after top dead centre (ATDC). The RGA matrix (𝚲), for the system with Eq. (1) and (2), is defined as: 

𝚲 = [

𝜆11 𝜆12 𝜆13
𝜆21 𝜆22 𝜆23
𝜆32 𝜆32 𝜆33

] (3) 

where 𝜆𝑖𝑗 is the relative gain between 𝑦𝑖 and 𝑢𝑗 , and is obtained as follows [11,12]: 

𝜆𝑖𝑗 =
𝑝𝑖𝑗

𝑞𝑖𝑗
 (4) 

in which, 𝑝𝑖𝑗 is the open-loop gain between 𝑦𝑖 and 𝑢𝑗 , and 𝑞𝑖𝑗 is the closed-loop gain between 𝑦𝑖 and 𝑢𝑗 . 

𝑝𝑖𝑗 gains show the level of interaction among different inputs and outputs of the engine model in an 

open-loop structure. The open-loop gain matrix (𝐏) is defined as [11]: 
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𝐏 = [

𝑝11 𝑝12 𝑝13
𝑝21 𝑝22 𝑝23
𝑝31 𝑝32 𝑝33

] =

[
 
 
 
 
 
 
𝛿𝐴𝐹𝑅

𝛿�̇�𝑓𝑐

𝛿𝐴𝐹𝑅

𝛿�̇�𝑎𝑖

𝛿𝐴𝐹𝑅

𝛿𝛥

𝛿𝜔𝑒
𝛿�̇�𝑓𝑐

𝛿𝜔𝑒
𝛿�̇�𝑎𝑖

𝛿𝜔𝑒
𝛿𝛥

𝛿𝑇𝑒𝑥ℎ
𝛿�̇�𝑓𝑐

𝛿𝑇𝑒𝑥ℎ
𝛿�̇�𝑎𝑖

𝛿𝑇𝑒𝑥ℎ
𝛿𝛥 ]

 
 
 
 
 
 

 (5) 

where 𝑝𝑖𝑗 can be determined by utilizing experimental tests. For instance, 𝑝11 is found by applying a 

small change (𝛿�̇�𝑓𝑐) in �̇�𝑓𝑐 and measure the impact of this change on the corresponding output (𝛿𝐴𝐹𝑅). 

This should be done when the engine runs at the steady state conditions and there are no changes in the 

other two inputs. Instead of doing the experimental tests which is time consuming and costly, here a 

more convenient approach is taken to find the open-loop gains. By looking into Eq. (5), it can be easily 

concluded that the open-loop matrix is equivalent to the linearized engine model with three inputs 

(�̇�𝑓𝑐, �̇�𝑎𝑖 , Δ) and three outputs (𝐴𝐹𝑅,𝜔𝑒 , 𝑇𝑒𝑥ℎ). Thus, a linear model of the engine is required to perform 

the RGA analysis. To this end, a linear model is identified based on the available engine cold start 

experimental data. 

Figure 1 shows two sets of experimental data which are taken from the cold start operation of a 2.4-Liter, 

4-cylinder, DOHC 16 valve Toyota 2AZ-FE engine with a close-coupled three-way catalytic converter. 

Details of the engine experimental setup are found in [13-15]. These two data sets are merged into the 

MATLAB® System Identification Toolbox to find first order continuous-time linear sub-models. The 

linear model has three inputs (�̇�𝑎𝑖, �̇�𝑓𝑐, Δ) and three outputs (𝜔𝑒 , 𝐴𝐹𝑅, 𝑇𝑒𝑥ℎ). The open-loop bode plots 

of the identified data-based first order sub-models are shown in Figure 2. As can be seen, all the outputs 

of the model are affected by all the inputs. This observed internal coupling from the identified model is 

consistent with the physics of the engine cold start dynamics. 𝐴𝐹𝑅 is mainly a function of the injected 

fuel (�̇�𝑓𝑐) and air mass flow rate (�̇�𝑎𝑖); however, the spark timing (Δ) also affects the 𝐴𝐹𝑅. The link 

between Δ and 𝐴𝐹𝑅 can be traced in the coupling between engine torque, speed, and resulting air flow 

variations. In a similar manner to 𝐴𝐹𝑅 dynamics, engine speed dynamics are considerably affected by 

�̇�𝑓𝑐 and �̇�𝑎𝑖. Moreover, engine speed is affected by the spark timing through torque generation. Finally, 

as can be seen from the third row of the Figure 2, exhaust gas temperature dynamic is a strong function 

of the spark timing and fuel injection. The main control input for regulating the exhaust gas temperature 

is the spark timing; however, any changes in the fuel injection rate can impact the combustion phasing 
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inside the cylinder and consequently alter the exhaust gas temperature. In addition, increasing the engine 

speed (ωe) leads to less heat loss inside the cylinder and consequently affects temperature of exhaust 

gases leaving the engine cylinder. This explains the link between 𝑇𝑒𝑥ℎ and ωe (�̇�𝑎𝑖). Table 1 and Figure 

3 show the performance of the first order model in estimating the engine dynamics. Next, the identified 

linear sub-models are used in the RGA analysis for finding the open-loop gains in Eq. (5). 

 
Figure 1: Experimental data used for model identification, (𝒂𝟏,𝟐,𝟑) inputs: �̇�𝒂𝒊, �̇�𝒇𝒄, 𝚫,  

(𝒃𝟏,𝟐,𝟑) outputs: 𝝎𝒆, 𝑨𝑭𝑹, 𝑻𝒆𝒙𝒉. 

Table 1: Mean (�̅�) and standard deviation (𝝈𝒆) errors in the first order estimated cold start engine model  

compared to the experimental data.  

 𝑨𝑭𝑹 [−] 𝝎𝒆 [𝒓𝒂𝒅

/𝒔𝒆𝒄] 

𝑻𝒆𝒙𝒉 [
𝒐𝑪] 

�̅� 0.3 8.7 10.1 

𝝈𝒆 0.3 4.6 12.8 



2017 International Conference on Advanced Vehicle Powertrains 

7 

 

 
Figure 2: Open-loop bode plot of the identified model based on the experimental data shown in Figure 1 with three inputs 

( �̇�𝒇𝒄, �̇�𝒂𝒊, 𝚫) and three outputs (𝑨𝑭𝑹, �̇�𝒇, 𝑻𝒆𝒙𝒉). 

 
Figure 3: Estimated first order model in comparison with the experimental data (a) AFR, (b) engine speed,  

and (c) exhaust gas temperature. 

In the frequency domain, the transfer function of the linear engine model has the same concept of the 

open-loop gains (Eq. (5)). Thus, in the frequency domain, 𝐏 can be alternatively defined as: 

𝐏(𝑠) = [

𝐺11(𝑠) 𝐺12(𝑠) 𝐺13(𝑠)

𝐺21(𝑠) 𝐺22(𝑠) 𝐺23(𝑠)

𝐺31(𝑠) 𝐺32(𝑠) 𝐺33(𝑠)
] , 𝐺𝑖𝑗(𝑠) =

1

𝜏𝑖𝑗𝑠 + 𝑘𝑖𝑗
 

(6) 
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where, the bode plots of 𝐏(𝑠) were already shown in Figure 2. According to [11,12], once the open-loop 

gains are found, the RGA matrix (𝚲), in the frequency domain, can be obtained by solving the following 

equation: 

                      𝚲(s) = 𝐏(s)⨂(𝐏−1(𝒔))
𝑇

                                                                                                                             (7) 

in which, (𝐏−1)𝑇is the transpose of the inverted 𝐏. Additionally, “⨂” denotes the element-by-element 

product. If it is assumed that (𝐏−1)𝑇 has the following structure: 

                      (𝐏−1)𝑇 = [

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

]                                                                                                                             
(8) 

then [11]: 

                   𝑐𝑖𝑗 =
1

𝑞𝑖𝑗
                                                                                                                                                                                                                                           (9) 

where 𝑞𝑖𝑗 is the closed-loop gain between 𝑦𝑖 and 𝑢𝑗 . If the calculated RGA value is equal to zero (𝜆𝑖𝑗 =

0), it means that the open-loop gain between 𝑦𝑖 and 𝑢𝑗  is zero and there is no interaction between this 

pair of I/O. If 𝜆𝑖𝑗 = 1 (equivalent to 20log(1)=0 in the bode plot), it can be concluded that 𝑦𝑖 and 𝑢𝑗   are 

strong function of each other, and in the closed-loop structure, the control loop between 𝑦𝑖 and 𝑢𝑗   is not 

affected by other loops. On the side, if 0 ≪ 𝜆𝑖𝑗 ≪ 1, then the closed-loop between 𝑦𝑖 and 𝑢𝑗  is affected 

by other inputs, and there is interaction among different control loops.  

Figure 4 shows the results of the engine cold start dynamics coupling analysis by using the RGA 

technique based on the first order sub-models shown in Figure 2. The first important observation from 

Figure 4 is the dominant diagonal RGA values (𝜆𝑖𝑖 = 1, which represented by “0” in the bode plots). 

This means that despite the complex interaction among different inputs and outputs of the engine 

dynamics, in a closed-loop structure the diagonal pairing between inputs and outputs (𝑢𝑖 𝑦𝑖) are not 

affected by other loops (𝑢𝑗 𝑦𝑖, 𝑖 ≠ 𝑗). In other words, the closed-loop control system for the engine 

during the cold start phase strongly leans towards a decentralized (SISO) structure. It can be seen that 

for the AFR (𝑦1) controller, as expected, the main regulatory control input is the fuel injection rate (𝑢1).  

Although AFR is linked to air mass flow dynamics, the loop between AFR and �̇�𝑎𝑖 has no considerable 

effect on the main AFR control loop with �̇�𝑓𝑐. Moreover, the loop between AFR and Δ barely affects the 

AFR �̇�𝑓𝑐 control loop. 
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Similar to AFR, for the engine speed controller, the dominant loop is the 𝜔𝑒 �̇�𝑎𝑖 (i.e., 𝑦2 𝑢2) loop, 

while with a much lower extend, the 𝜔𝑒 �̇�𝑓𝑐 loop is affecting the main closed-loop. The reason for 

this impact from fuel injection on the engine speed is the link between AFR and intake air flow dynamics. 

Especially during the cold start phase, in which the AFR is first rich and then it becomes stoichiometric. 

Tracking the desired AFR, while idle engine speed usually varies during the cold start, explains how fuel 

injection is linked to the rotational dynamics. In a similar manner to 𝐴𝐹𝑅 �̇�𝑓𝑐 loop, the 𝜔𝑒 Δ loop 

has no significant effect on the main engine speed closed-loop (𝜔𝑒 �̇�𝑎𝑖). Eventually, for the exhaust 

gas temperature controller, it can be seen that 𝑇𝑒𝑥ℎ Δ is the main closed-loop and the other two loops 

(𝑇𝑒𝑥ℎ �̇�𝑓𝑐 and 𝑇𝑒𝑥ℎ �̇�𝑎𝑖) has no considerable impact on the 𝑇𝑒𝑥ℎ Δ loop. Overall, the results of 

dynamic coupling analysis by using the RGA method suggest to use a SISO structure for the engine cold 

start controller. Thus, in the next section, a set of three SISO DSMCs will be designed and tested for the 

engine cold start model. 

 

 
Figure 4: Bode plots of RGA for the identified data-based engine model with three inputs ( �̇�𝒂𝒊, �̇�𝒇𝒄, 𝚫)  

and three outputs (𝑨𝑭𝑹,𝝎𝒆, 𝑻𝒆𝒙𝒉). 
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3-Design of SISO Model-Based Cold Start Controller  

3-1-Engine Cold Start Emission Model 

An accurate and computationally efficient physics-based model of the engine cold start is required that 

considers the complex and nonlinear dynamics of the SI engine during the cold start phase. To this end, 

a control-oriented cold start emission model from [13] is used in this section for designing a model-based 

controller. The model has two sub-models (i) SI engine model, and (ii) catalytic converter model. The 

first sub-model captures major dynamics affecting 𝐴𝐹𝑅, engine speed, and exhaust gas temperature. The 

engine model has five states: the air mass at intake manifold (𝑚𝑎), the engine speed (𝜔𝑒), the mass flow 

rate of injected fuel into cylinders (�̇�𝑓), the catalyst temperature (𝑇𝑐𝑎𝑡) and the exhaust gas temperature 

(𝑇𝑒𝑥ℎ). The model has three inputs: �̇�𝑎𝑖, �̇�𝑓𝑐, and ∆. The engine sub-model is parameterized for the 2.4-

Liter direct injection Toyota 2AZ-FE engine. Further modeling procedure and experimental validation 

of the model are detailed in [14] and [15]. The states and equations describing the model are as follows: 

𝑥 =

[
 
 
 
 
𝑚𝑎

𝜔𝑒
�̇�𝑓
𝑇𝑐𝑎𝑡
𝑇𝑒𝑥ℎ]

 
 
 
 

,      �̇�(𝑡) =  

[
 
 
 
 
 
�̇�𝑎

�̇�𝑒
�̈�𝑓

�̇�𝑐𝑎𝑡
�̇�𝑒𝑥ℎ]

 
 
 
 
 

=

[
 
 
 
 
 
 
 

�̇�𝑎𝑖 − �̇�𝑎𝑜
1

𝐽
(𝜏𝑛𝑒𝑡 − 𝜏𝐿)

1

𝛼𝑓
(�̇�𝑓𝑐 − �̇�𝑓)

1

𝑚𝑐𝑝
(�̇�𝑔𝑒𝑛 − �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡)

1

𝛼𝑒
(𝑆𝑇 × 𝐴𝐹𝐼 − 𝑇𝑒𝑥ℎ) ]

 
 
 
 
 
 
 

                                                                                                                                                                                                                                           (10) 

Details of the functions and the parameters in Eq. (10) are found in the Appendix. The second sub-model 

simulates the engine–out HC, the catalytic converter efficiency, and tailpipe HC emissions. The HC 

production rate from the engine (𝐻�̇�𝑒𝑛𝑔) is calculated along with the catalytic converter efficiency (𝜂𝑐𝑎𝑡) 

to give the HC emission rate out of the tailpipe (𝐻�̇�𝑡𝑝) [16]:   

𝐻�̇�𝑒𝑛𝑔(𝑡) =
�̇�𝑓(𝑟𝑐−1)

𝑟𝑐
𝑒
[−𝑎(

𝜃𝐸𝑉𝑂−𝜃0
𝛿𝜃

)
𝑛
]
                                                                                                                                                                                                                                           

(11) 

𝜂𝑐𝑎𝑡(𝑡) = 0.98

(

 1 − 𝑒𝑥𝑝

[
 
 
 

−5(

𝐴𝐹𝑅
𝐴𝐹𝑅𝑠𝑡

− 0.7

0.3
)

15

 

]
 
 
 

 

)

 . (1 − 𝑒𝑥𝑝 [−0.2 (
𝑇𝑐𝑎𝑡 − 30

150
)
5

]) (12) 

                𝐻�̇�𝑡𝑝(𝑡) = 𝐻�̇�𝑒𝑛𝑔(1 − 𝜂𝑐𝑎𝑡)                                                                                                               (13) 

where, 𝐴𝐹𝑅𝑠𝑡 indicates stoichiometric air fuel ratio, 𝑟𝑐 the compression ratio. 𝛿𝜃, 𝜃0, 𝜃𝐸𝑉𝑂 are parameters 

to calculate the fuel burn rate as detailed in the Appendix. Eq. (10) to (13) altogether shape the dynamical 
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system equations in which the output of the model is the tailpipe HC flow rate. The difference between 

engine-out and tailpipe HC emissions depends on the catalytic converter performance in the exhaust 

system. The cold start model has been validated with experimental data from the same engine in the 

previous work [17]. The validation results in [17] show that at the end of the simulation period (200 

seconds), there is less than 2% error between measured and simulated tailpipe HC emissions. 

 

3-2-Second Order Adaptive DSMC Design for Engine Emission Controls 

The main control objective is to reduce the cumulative HC tailpipe emission, which is a function of the 

engine transient performance and the catalytic converter efficiency. In this paper, desired 𝐴𝐹𝑅𝑑 and 𝜔𝑑 

control trajectories are taken from the test results using the ECU of Toyota engine. The exhaust gas 

temperature of 650oC is chosen for the desired exhaust gas temperature using available experimental data 

for the engine [18].  It is assumed that if the engine can track the pre-defined desired trajectories 

accurately, then the catalyst light-off time will be shorten and the tailpipe emission will be mitigated 

effectively. This means that the engine cold start emission control problem is narrowed down to a 

tracking control problem. To this end, in this paper a second order discrete sliding mode control (DSMC) 

from [8] is chosen for cold start controller design. This selection is done due to (i) dealing with highly 

nonlinear dynamics of the engine cold start model, (ii) the uncertainties in the plant model, (iii) 

imprecisions at the controller inputs/outputs (I/O) due to data sampling and quantization, and (iv) high 

frequency oscillations due to chattering phenomena in conventional sliding mode controls. The structure 

of DSMC, as shown in our previous work [8], allows for deriving the adaptation laws to remove 

uncertainties within the engine model, and guarantees the closed-loop controller stability. 

According to the dynamics coupling analysis results from Section 2, it was concluded that despite the 

internal coupling between different inputs and outputs of the engine, the engine controller, 

with  �̇�𝑓𝑐, �̇�𝑎𝑖, Δ as the inputs and 𝐴𝐹𝑅,𝜔𝑒 , 𝑇𝑒𝑥ℎ as the outputs, strongly leans towards a decentralized 

(SISO) structure. Thus, in this section, a set of three SISO controllers are designed to track desired 

trajectories for 𝐴𝐹𝑅, 𝜔𝑒, and 𝑇𝑒𝑥ℎ. Based on these three desired trajectories, three discrete first order 

sliding variables (𝑠), as the tracking errors at each time step (𝑘), are defined: 

𝑠1(𝑘) = 𝐴𝐹𝑅(𝑘) − 𝐴𝐹𝑅𝑑(𝑘)                                                                                                                                                                                                                                                                                                                                             (14) 
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𝑠2(𝑘) = 𝜔𝑒(𝑘) − 𝜔𝑒,𝑑(𝑘) (15) 

𝑠3(𝑘) = 𝑇𝑒𝑥ℎ − 𝑇𝑒𝑥ℎ,𝑑(𝑘)                                                                                                         (16) 

Next, the second order sliding variables (𝜉) are defined with respect to the first order sliding variable as 

follows [19]: 

                        𝜉𝑖(𝑘) = 𝑠𝑖(𝑘) + 𝛽𝑖𝑠𝑖(𝑘),   𝑖 = 1,2,3                                                                                         (17) 

where, 𝛽𝑖 is the gain of the second order DSMC and it should be 1 > 𝛽𝑖 > 0 to guarantee the asymptotic 

stability of the closed-loop system [8]. The main difference between the first and second order DSMCs 

is that on the sliding manifold, in addition to the zero convergence of the sliding variable (𝑠) which is 

satisfied by applying the first order DSMC, the second order DSMC drives the derivative (difference 

function) of 𝑠 to zero. The control input of the second order DSMC on the sliding manifold is obtained 

by solving the following equalities in discrete time: 

                            𝜉𝑖(𝑘 + 1) =  𝜉𝑖(𝑘) = 0,   𝑖 = 1,2,3                                                                                      (18) 

Eq. (18) is equivalent to the 𝑠(𝑡) = �̇�(𝑡) = 0  for a second order sliding mode controller in continuous-

time domain [20]. In order to find the control inputs of the second order DSMC for the engine case study 

with respect to Eq. (18), first the continuous-time model of the engine in Eq. (10) should be discretized 

by using the Euler approximation method [21,22]. It should be noted from Eq. (10) that since there is no 

direct control input for regulating the engine speed, the desired air mass inside the intake manifold (𝑚𝑎,𝑑) 

is considered as the synthetic control input for the engine speed controller. The calculated 𝑚𝑎,𝑑 is then 

used as the desired trajectory for the air mass flow controller which has  �̇�𝑎𝑖 as the control input. Thus, 

the first (𝑠4) and second (𝜉4) order sliding variables for the forth control surface are defined as follows: 

   𝑠4(𝑘) = 𝑚𝑎(𝑘) − 𝑚𝑎,𝑑(𝑘)                                                                                                                                                                                     (19) 

𝜉4(𝑘) = 𝑠4(𝑘 + 1) + 𝛽4𝑠4(𝑘)                                                                                            (20) 

Moreover, since 𝑇𝑐𝑎𝑡 is not among the desired trajectories of the engine controller and its dynamics 

strongly depend on the dynamics of the catalytic converter, 𝑇𝑐𝑎𝑡 is not considered in the controller 

formulation. Therefore, the discrete from of the continuous-time nonlinear model in Eq. (10), in the 

absence of 𝑇𝑐𝑎𝑡 state, becomes [22]:  
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[
 
 
 
𝑚𝑎(𝑘 + 1)

𝜔𝑒(𝑘 + 1)
�̇�𝑓(𝑘 + 1)

𝑇𝑒𝑥ℎ(𝑘 + 1)]
 
 
 

=

[
 
 
 
𝑚𝑎(𝑘)

𝜔𝑒(𝑘)
�̇�𝑓(𝑘)

𝑇𝑒𝑥ℎ(𝑘)]
 
 
 

+ 𝑇 

[
 
 
 
 
 

�̇�𝑎𝑖(𝑘) − �̇�𝑎𝑜(𝑘)
1

𝐽
(𝜏𝑛𝑒𝑡(𝑘) − 𝜏𝐿(𝑘))

1

𝛼𝑓
(�̇�𝑓𝑐(𝑘) − �̇�𝑓(𝑘))

1

𝛼𝑒
(𝑆𝑇 × 𝐴𝐹𝐼(𝑘) − 𝑇𝑒𝑥ℎ(𝑘))]

 
 
 
 
 

 

(21) 

where, 𝑇 is the sampling time. Figure 5 shows the schematic of the engine cold start second order DSMC 

with three control inputs and three outputs. The first controller is the AFR controller which tracks the 

desired AFR trajectory by adjusting the fuel injection rate.  The second controller is the idle speed 

controller which tracks the desired engine speed profile via the air mass flow rate into the cylinders by 

using the air throttle body as the actuator. The third controller is 𝑇𝑒𝑥ℎ controller which tracks the desired 

exhaust gas temperature trajectory by regulating the spark timing. Figure 5 also shows that the feedback 

data from the engine are sampled and quantized via an analog-to-digital converter (ADC) unit. The 

control commands from the ECU are updated at a rate equal to 𝑇.  

The analytic equations of the second order SISO DSMCs inputs can be obtained by applying Eq. (18) to 

the discretized nonlinear model in Eq. (21). However, it is important to incorporate any uncertainties in 

the engine model during the DSMC design. Otherwise, the controller can significantly deviate from its 

desired performance [22,23]. The discrete nonlinear equations of the engine model from Eq. (21) are 

updated to include unknown multiplicative uncertainty terms (𝜑𝑖) as follows: 

         

[
 
 
 
𝑚𝑎(𝑘 + 1)

𝜔𝑒(𝑘 + 1)
�̇�𝑓(𝑘 + 1)

𝑇𝑒𝑥ℎ(𝑘 + 1)]
 
 
 

=

[
 
 
 
𝑚𝑎(𝑘)

𝜔𝑒(𝑘)
�̇�𝑓(𝑘)

𝑇𝑒𝑥ℎ(𝑘)]
 
 
 

+ 𝑇

[
 
 
 
 
 
 

𝜑𝑚𝑎[−�̇�𝑎𝑜(𝑘)]

𝜑𝜔𝑒 [
1

𝐽
(−𝜏𝐿(𝑘))]

𝜑�̇�𝑓 [
1

𝛼𝑓
(−�̇�𝑓(𝑘))]

𝜑𝑇𝑒𝑥ℎ [
1

𝛼𝑒
(600𝐴𝐹𝐼(𝑘) − 𝑇𝑒𝑥ℎ(𝑘))]]

 
 
 
 
 
 

⏟                      
𝜑𝑖×𝑓𝑖(𝑥(𝑘))

+ 𝑇

[
 
 
 
 
 

�̇�𝑎𝑖(𝑘)
30000

𝐽
𝑚𝑎,𝑑(𝑘)

1

𝛼𝑓
�̇�𝑓𝑐(𝑘)

7.5

𝛼𝑒
Δ(𝑘) ]

 
 
 
 
 

⏟          
𝒈𝒊(𝒙(𝒌))×𝒖𝒊(𝒌)

 

(22) 

where 𝑓𝑖(𝑥(𝑘)) is the main part of the dynamics, which is subjected to uncertainties due to variation in 

the engine parameters or errors in estimating the model, and 𝑔𝑖(𝑥(𝑘)) is a non-zero input coefficient. 

By comparing Eq. (22) with Eq. (21), it can be easily concluded that the nominal values for 𝜑𝑖 is “1”. 

This means that if 𝜑𝑖 ≠ 1, then the ultimate goal of the adaptation algorithm would be converging the 

unknown 𝜑𝑖 to the nominal value, “1”. We showed in [8] that solving the following adaptation law for 

each of the four controllers leads to 𝜑𝑖 → 1: 

�̂�𝑖(𝑘 + 1) = �̂�𝑖(𝑘) +
𝑇.𝑠𝑖(𝑘).𝑓𝑖(𝑥(𝑘))

𝜌𝜑𝑖
                                                                                                

(23) 
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Figure 5: Schematic of the second order adaptive DSMC for the engine cold start. 

where 𝜌𝜑𝑖 > 0 is a tunable adaptation gain chosen for the numerical sensitivity of the unknown 

multiplicative parameter estimation, and �̂�𝑖 is the estimation of the unknown parameter 𝜑𝑖 . According 

to Eq. (22), four unknown uncertainty terms are considered in the modeled engine equations 

(𝜑𝑚𝑎 , 𝜑𝜔𝑒 , 𝜑�̇�𝑓 , 𝜑𝑇𝑒𝑥ℎ). 𝜑𝑚𝑎  represents any error in the air mass dynamics, �̇�𝑎𝑜(𝑘), which is calculated 

with respect to Eq. (A5) and is a direct function of the engine volumetric efficiency (𝜂𝑣𝑜𝑙).  𝜂𝑣𝑜𝑙 curve 

is found by using Eq. (A6) in the Appendix. 𝜑𝜔𝑒 compensates for any error in reading the torque map 

(𝜏𝐿) in the engine rotational dynamics. Fuel flow rate dynamics is a strong function of fuel evaporation 

time constant (𝛼𝑓). 𝜑�̇�𝑓 represents any errors in estimating the fuel evaporation time constant. Finally, 

in the exhaust gas temperature dynamics, the exhaust gas time constant (𝛼𝑒) plays an important role. 

Thus 𝜑𝑇𝑒𝑥ℎ is representing any errors or variation in this time constant. Overall, the unknown 
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multiplicative parameters inside the engine model can be estimated (�̂�𝑚𝑎 , �̂�𝜔𝑒 , �̂��̇�𝑓 , �̂�𝑇𝑒𝑥ℎ) by solving 

Eq. (23) for each controller, simultaneously. Finally, the control inputs of the SISO adaptive second 

order DSMC in the presence of modeling uncertainties become: 

�̇�𝑎𝑖(𝑘) =
1

𝑇
[�̂�𝑚𝑎(𝑘)�̇�𝑎𝑜(𝑘)𝑇 − (𝛽4(𝑘) + 1)𝑠4(𝑘) +𝑚𝑎,𝑑(𝑘 + 1) − 𝑚𝑎,𝑑(𝑘)] (24) 

𝑚𝑎,𝑑(𝑘) =
𝐽

30000𝑇
[�̂�𝜔𝑒(𝑘)

𝑇

𝐽
(100 + 0.4𝜔𝑒(𝑘)) −(𝛽2(𝑘) + 1)𝑠2(𝑘) + 𝜔𝑒,𝑑(𝑘 + 1) − 𝜔𝑒,𝑑(𝑘)] (25) 

�̇�𝑓𝑐(𝑘) =
𝛼𝑓

𝑇
[�̂��̇�𝑓(𝑘)

𝑇

𝛼𝑓
�̇�𝑓(𝑘) − (𝛽1 + 1)𝑠1(𝑘) + �̇�𝑓,𝑑(𝑘 + 1) − �̇�𝑓,𝑑(𝑘)] 

(26) 

Δ(𝑘) =
𝛼𝑒

7.5.𝐴𝐹𝐼.𝑇
[−�̂�𝑇𝑒𝑥ℎ(𝑘)

𝑇

𝛼𝑒
(600. 𝐴𝐹𝐼 − 𝑇𝑒𝑥ℎ(𝑘)) − (𝛽3 + 1)𝑠3(𝑘) + 𝑇𝑒𝑥ℎ,𝑑(𝑘 + 1) − 𝑇𝑒𝑥ℎ,𝑑(𝑘)                             (27) 

In the absence of modeling uncertainties (𝜑𝑖 = 1), Figure 6-a shows the SISO second order DSMC 

performance in tracking the variable and non-smooth AFR, exhaust gas temperature, and engine speed 

trajectories under sampling time of 20 ms and quantization level of 16 bit. According to the RGA analysis 

results in Figure 4, the highest closed-loop coupling, outside the main closed-loop, exists between AFR 

and engine speed control loops. As can be seen from Figure 6-a, whenever the engine speed decreases 

sharply, the AFR tracking performance is affected. However, the SISO controller handles this coupling, 

which acts as a disturbance on the AFR controller, accordingly, and the disturbance effects on the AFR 

controller performance is less than 0.5%, in terms of the tracking errors. Overall, Figure 6 illustrates that 

for the engine cold start problem, despite the non-smooth shape of the desired trajectories, the SISO 

second order DSMCs are able to track all the desired trajectories accurately, without getting affected by 

the other control loops considerably. Thus, the SISO controller design can fulfill the desired performance 

requirements of the complex engine cold start dynamics.  

Figure 7 shows the performance of the adaptation laws for removing up to 50% uncertainty within the 

engine dynamics. This signifies the importance of handling the unknown uncertainty terms. As can be 

seen from Figure 7-(a,b,c,d)1, in the absence of the adaptation, the multiplicative unknown terms 

generate a large offset in the engine dynamics (𝑓𝑖(𝑥(𝑘))). These errors within the model will propagate 

through the controller structure and lead to controller failure. However, when the adaptation becomes 

active, the adapted models converge to the nominal models once the adaptation period is over. Figure 7-

(a,b,c,d)2 show that the adaptation mechanism is able to converge all the four unknown multiplicative 

parameters to their nominal values (“1”) in less than 5 sec of the simulation time. Overall, the adaptation 
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mechanism is able to remove up to 95% of the uncertainties in the models in comparison with the non-

adaptive models. 

 
Figure 6: Results of tracking desired engine trajectories by using the designed SISO DSMC 

(T=20 ms, quantization level=16 bit). 

5- Controller Real-Time Verification 

In this section, the designed SISO adaptive second order DSMC for the engine cold start problem is 

tested in real-time by using a processor-in-the-loop (PIL) setup with an actual ECU. The schematic of 

the PIL setup is shown in Figure 8. The PIL setup has two different processors which communicate with 

each other. The first processor is a National Instrument (NI) PXI processor (NI PXIe-8135). The PXI 

processor is used to implement the model of the engine cold start emission, via NI VeriStand® software, 

and sends feedback signals from the model to the ECU. The second processor is a dSPACE 

MicroAutoboxII (MABX), which is considered as the ECU. The feedback signals from the engine model 

(PXI processor) and the control commands at the ECU outputs are sampled every 20 ms, and digitized 

with a quantization level of 16 bit. The second order DSMCs along with the adaptation mechanism are 
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implemented into the MABX via dSPACE Control Desk®. The real-time tracking performance of the 

second order DSMCs and the engine and catalytic converter performances are monitored via a user 

interface desktop computer. 

 
Figure 7: The impacts of multiplicative uncertainty terms on the engine dynamics inside the second order SISO DSMC and how 

the adaptation mechanism drives the model with error to its nominal value: (a) 𝑻𝒆𝒙𝒉, (b)  �̇�𝒇 , (c) 𝝎𝒆, and (d) 𝒎𝒂   

(T=20 ms, quantization level=16-bit). 

Figure 9 shows the tracking performance of the SISO adaptive and non-adaptive second order DSMCs 

under modeling uncertainties. In the absence of the adaptation, it can be seen that the controller fails to 

track the desired trajectories. The reason for this failure is the errors within the engine model which were 

shown in Figure 7. On the other side, once the adaptation period (the first 5 sec) is over, the errors in the 

model are completely removed; then, the adaptive DSMC tracks the desired trajectories accurately and 

smoothly. The real-time test results in Figure 9 show that the adaptive controller can reduce the tracking 

errors by more than 90%, in terms of the mean tracking errors, in comparison with the non-adaptive 

DSMC. 
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Figure 8: Schematic of the processor-in-the-loop (PIL) setup for real-time verification of the designed SISO DSMCs.  

 
Figure 9: Results of engine control under model uncertainties: (a) exhaust gas temperature, (b) AFR, and (c) engine speed  

(T=20 ms, quantization level=16 bit). 

The desired trajectories in Figure 9 are taken from Toyota ECU, and used as the optimum trade-off 

among engine speed, AFR, and exhaust gas temperature during the engine cold start phase. This means 

that accurate tracking of these trajectories by the adaptive DSMC leads to fast catalyst light-off, and low 
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tailpipe HC emissions. Figure 10 illustrates the real-time performance of the control system in 

minimizing the tailpipe HC emission. The tailpipe and engine-out HC flow rates are both shown in 

Figure 10-a. As can be seen, during the first seconds of the cold start period, both engine-out and tailpipe 

HC emissions are high. This is due to low catalyst temperature (Figure 10-c) and rich air-fuel mixture 

used to avoid combustion instability at the beginning of the cold start period. After AFR becomes 

stoichiometric and the catalytic converter reaches the light-off temperature, the tailpipe HC emission 

rate starts to fall. Eventually, at the end of the test period (i.e., 40 sec), the tailpipe HC emission rate 

approaches to zero. 

 

Figure 10: Cold start emission control results by using SISO second order adaptive DSMC: (a) engine-out and 

tailpipe HC emission flow rates, (b) cumulative tailpipe HC emission, (c) catalyst temperature, and (d) catalytic 

converter efficiency (T=20 ms, quantization level=16-bit).  

Figure 10-b shows the cumulative amount of the tailpipe HC emission generated during the cold start 

phase. The limit for the cumulative HC emission for North America UDDS driving cycle at the end of 

the first 40 sec of the cold start phase is 2.5 gr, assuming that over 80% of the total HC emissions come 

from the cold start period [2,3]. As can be seen from Figure 10-b, under the data sampling and 

quantization imprecisions, and also uncertainties within the engine model, the second order adaptive 

SISO DSMC is able to meet the HC emission limit (2.5 gr) by end of the test period (~2 gr). Figure 10-
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c shows that the catalytic converter reaches to 50% efficiency (light-off) in 30 sec. In a similar manner, 

Figure 10-d shows that without using any external heating energy sources, catalyst conversion efficiency 

of more than 90% can be achieved by using the adaptive second order DSMC.  

Summary and Conclusion 

In this paper, a novel second order DSMC with adaptation against modelling uncertainties, and 

consideration of the data sampling and quantization imprecisions, was designed for an SI engine cold 

start HC emission problem. The structure of the closed-loop controller was chosen based on a dynamic 

coupling analysis by using relative gain array (RGA) analysis.  The RGA analysis showed that despite 

the complex and internally coupled dynamics of the engine during the cold start phase, the second order 

DSMC can be designed in a decentralized (SISO) structure with separate control loops for AFR, engine 

speed and exhaust gas temperature. Simulation and real-time experimental verification results of the 

designed controller showed that: 

 A set of three SISO DSMCs can track desired AFR, engine speed and exhaust gas temperature 

trajectories accurately during cold start phase.  

 In the presence of up to 50% modelling uncertainty within each of the SISO controllers, the 

adaptation mechanism inside the second order DSMC can remove the errors in the model 

permanently in less than 5 sec by up to 95%. Moreover, the comparison results between adaptive 

and non-adaptive DSMCs showed that the adaptive DSMC can improve the tracking 

performance of the non-adaptive DSMC by up to 90%. 

 The adaptive DSMC is able to heat-up the catalyst to reach to 50% efficiency in less than 30 sec. 

This is the outcome of accurate tracking of optimum trajectories that lead to shorten catalyst 

light-off time and reaching over 90% conversion efficiency for the catalytic converter at the end 

of test period (40 sec).  
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Appendix   

Engine cold start model: 
Table A1. Plant Model Constants 

Constant Value [unit] 

𝐽 0.1454 [𝑚2𝑘𝑔] 
𝛼𝑓 0.06 [1/𝑠𝑒𝑐] 
𝑚𝐶𝑝 1250 [𝐽/𝐾] 
𝑎 −2 [−] 
𝑛 5 [−] 
𝜃𝑒𝑣𝑜 110 [o ATDC] 

𝑟𝑐  9 [−] 

Plant Model Functions: 

𝑆𝑇 = 7.5∆ + 600                                                                      (A1) 

𝐴𝐹𝐼 = cos{0.13[𝐴𝐹𝑅(𝑚𝑎, 𝜔𝑒 , �̇�𝑓) − 13.5]} (A2) 

𝜏𝑛𝑒𝑡(𝜔𝑒 , 𝑚𝑎) = 30000𝑚𝑎 − 0.4𝜔𝑒 − 100    (A3) 

 𝛼𝑒 =
2𝜋

𝜔𝑒
                                                                                     (A4) 

�̇�𝑎𝑜 = 0.0254𝜂𝑣𝑜𝑙𝑚𝑎𝜔𝑒 (A5) 

𝜂𝑣𝑜𝑙 = 𝑚𝑎
2(−0.1636𝜔𝑒

2 − 7.093𝜔𝑒 − 1750) 

                                              +𝑚𝑎(0.0029𝜔𝑒
2 − 0.4033𝜔𝑒 + 85.38)                                               

            −(1.06 × 10−6𝜔𝑒
2 − 0.0021𝜔𝑒 − 0.2719)                              

(A6) 

�̇�𝑖𝑛 = 16(𝑇𝑒𝑥ℎ − 𝑇𝑐𝑎𝑡)                                                                                           (A7) 

�̇�𝑜𝑢𝑡 = 0.642(𝑇𝑐𝑎𝑡 − 𝑇𝑎𝑡𝑚)                                                       (A8) 

�̇�𝑔𝑒𝑛 = 22.53(�̇�𝑎𝑜 + �̇�𝑓𝑇𝑒𝑥ℎ)𝜂𝑐𝑎𝑡𝐻�̇�𝑒𝑛𝑔  (A9) 

𝜃0 = 𝛥 + 10                                                                                                                                                                        (A10) 

𝛿𝜃 = 𝑘1(𝐴𝐹𝑅 − 16.2)
2 + 𝑘2, 

𝑤ℎ𝑒𝑟𝑒 {
𝐾1 = 0.1; 𝐾2 = 80  𝐴𝐹𝑅 > 𝐴𝐹𝑅𝑠𝑡
𝐾1 = 0.4; 𝐾2 = 80  𝐴𝐹𝑅 < 𝐴𝐹𝑅𝑠𝑡

                                                       
(A11) 


